Построение нечеткой системы
Из разработок искусственного интеллекта завоевали устойчивое признание экспертные системы, как системы поддержки принятия решений. Они способны аккумулировать знания, полученные человеком в различных областях деятельности. Посредством экспертных систем удается решить многие современные задачи, в том числе и задачи управления. Одним из основных методов представления знаний в экспертных системах являются продукционные правила, позволяющие приблизиться к стилю мышления человека. Обычно продукционное правило записывается в виде: «ЕСЛИ (посылка) (связка) (посылка)… (посылка) ТО (заключение)».Возможно наличие нескольких посылок в правиле, в этом случае они объединяются посредством логических связок «И», «ИЛИ».
Нечеткие системы (НС) тоже основаны на правилах продукционного типа, однако в качестве посылки и заключения в правиле используются лингвистические переменные, что позволяет избежать ограничений, присущих классическим продукционным правилам.
Таким образом, нечеткая система — это система, особенностью описания которой является:
нечеткая спецификация параметров;
нечеткое описание входных и выходных переменных системы;
нечеткое описание функционирования системы на основе продукционных «ЕСЛИ…ТО…»правил.
Важнейшим классом нечетких систем являются нечеткие системы управления (НСУ).Одним из важнейших компонентов НСУ является база знаний, которая представляет собой совокупность нечетких правил «ЕСЛИ–ТО», определяющих взаимосвязь между входами и выходами исследуемой системы. Существуют различные типы нечетких правил: лингвистическая, реляционная, модель Такаги-Сугено и др.